Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. It is to predict the affective orientation of an utterance as a continuous intensity variable. 2020. . Visual diagrams and textual question-answers are interplayed in the multi-modal transformer, which achieves cross-modal semantic comprehension and reasoning. Journalist : Yuan Yuan | Editor : Michael Sarazen We know you don't want to miss any story. 2020. This alert has been successfully added and will be sent to: You will be notified whenever a record that you have chosen has been cited. Cloud providers prioritise sustainability in data center operations, while the IT industry needs to address carbon emissions and energy consumption. We use our multi-task framework to perform in-depth analysis of the effect of joint training diverse tasks. 12-in-1: Multi-Task Vision and Language Representation Learning. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Vision-and-Language Tasks 2.1. In this work, we investigate these relationships between vision-and-language tasks by developing a large-scale, multi-task model. In this paper, we propose a simple one-stage multi-task framework for visual grounding tasks. The input of the NLVR task is two images and a text description, and the output is whether the corresponding relationship between the images and the text description is consistent (two labels: true or false). http://arxiv.org/abs/1907.11692, Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. The wide variety of independent V&L tasks motivated these researchers explore ways to consolidate some of them and the result of their efforts is an all-in-one model that learns from 12 supporting datasets of four broad categories of V&L tasks. Figure 1: We introduce an approach for effective multi-task learn- ing, training a single model on 12 popular vision-and-language datasets. Attention is All you Need. ViLBERT takes as input an image I and text segment Q. 12-in-1 is a multi-task model for discriminative vision-and-language tasks based on the ViLBERT (Vision and Language BERT) model. There was a problem preparing your codespace, please try again. Extensive experiments on the benchmark AI2D and FOODWEBS datasets demonstrate the effectiveness of our proposed HMTL over other state-of-the-art methods. In Advances in Neural Information Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Despite all the notable advancements, current KGQA systems only focus on answer generation techniques and not on answer verbalization. http://arxiv.org/abs/1412.3555. Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. Are you sure you want to create this branch? In COLING 1998 Volume 2: The 17th International Conference on Computational Linguistics. c"f~# voHdB:$|&WWU{Q[ T[lP|/.[` '24v/?I[W&n/\5P9?9X/u$![]Hu+6cnHx]lj)lb>v~1^31BWXCrW|syG e;_Qf nS,[? The GRE task is to localize an image region given a text reference. Find the Google colab notebook of above implementation here. Theres been progressive improvement, but nobody really expected this level of human utility.. Textbook Question Answering with Multi-modal Context Graph Understanding and Self-supervised Open-set Comprehension. 2018. In recent years researchers in the busy deep learning, computer vision and natural language processing communities have all become increasingly interested in vision and language (V&L). These datasets cover a wide range of tasks and require di- In Computer Vision -- ECCV 2020, Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm (Eds.). VL-BERT: Pre-training of Generic Visual-Linguistic Representations. 1998. Also, it supports an isolated analysis of each of the datasets involved. Need a comprehensive review of the past, present and future of modern AI research development? Further, we show that finetuning task-specific models from our single multi-task model can lead to further improvements, achieving performance at or above the state-of-the-art. Novel Object Captioning at Scale (NoCaps). A Probing Perspective, Emmanuelle Salin, Badreddine Farah, Stephane Ayache, Benoit Favre. Fine-tuning the multi-task model for single tasks gives better results than the baseline single-task trained models. 770--778. Trends of AI Technology Development Report is out! [n.d.]. You signed in with another tab or window. Further, we show that finetuning task-specific models from our single multi-task model can lead to further improvements, achieving performance at or above the state-of-the-art. Analytics India Magazine Pvt Ltd & AIM Media House LLC 2023. Conventional models used in this field employ common architectures to learn general Visio-linguistic representations and then fine-tune for specifically supported datasets. 2018 Fortune Global 500 Public Company AI Adaptivity Report is out!Purchase a Kindle-formatted report on Amazon.Apply for Insight Partner Program to get a complimentary full PDF report. Research. Researchers from the Facebook AI Research, Georgia Institute of Technology, and Oregon State University found that the skills required for different V&L tasks such as visual question answering and caption-based image retrieval overlap significantly, thanks mainly to the rise of V&L general architectures. 2014. Association for Computational Linguistics, Florence, Italy, 3568--3584. Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Taf jord. to demonstrate the benefits of pre-training in the multi-omic integration 247 task. Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and Daxin Jiang. (ICML, 2020) [paper] [code], Learning to Branch for Multi-Task Learning (ICML, 2020) [paper], Partly Supervised Multitask Learning (ICMLA, 2020) paper, Understanding and Improving Information Transfer in Multi-Task Learning (ICLR, 2020) [paper], Measuring and Harnessing Transference in Multi-Task Learning (arXiv, 2020) [paper], Multi-Task Semi-Supervised Adversarial Autoencoding for Speech Emotion Recognition (arXiv, 2020) [paper], Learning Sparse Sharing Architectures for Multiple Tasks (AAAI, 2020) [paper], AdapterFusion: Non-Destructive Task Composition for Transfer Learning (arXiv, 2020) [paper], Adaptive Auxiliary Task Weighting for Reinforcement Learning (NeurIPS, 2019) [paper], Pareto Multi-Task Learning (NeurIPS, 2019) [paper] [code], Modular Universal Reparameterization: Deep Multi-task Learning Across Diverse Domains (NeurIPS, 2019) [paper], Fast and Flexible Multi-Task Classification Using Conditional Neural Adaptive Processes (NeurIPS, 2019) [paper] [code], [Orthogonal] Regularizing Deep Multi-Task Networks using Orthogonal Gradients (arXiv, 2019) [paper], Many Task Learning With Task Routing (ICCV, 2019) [paper] [code], Stochastic Filter Groups for Multi-Task CNNs: Learning Specialist and Generalist Convolution Kernels (ICCV, 2019) [paper], Deep Elastic Networks with Model Selection for Multi-Task Learning (ICCV, 2019) [paper] [code], Feature Partitioning for Efficient Multi-Task Architectures (arXiv, 2019) [paper] [code], Task Selection Policies for Multitask Learning (arXiv, 2019) [paper], BAM! See Call for Papers for more details! Decoupling the Role of Data, Attention, and Losses in Multimodal Transformers, Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste Alayrac, Aida Nematzadeh, Multimodal Pretraining Unmasked: A Meta-Analysis and a Unified Framework of Vision-and-Language BERTs, Emanuele Bugliarello, Ryan Cotterell, Naoaki Okazaki, Desmond Elliott, Unifying Vision-and-Language Tasks via Text Generation, Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal, ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision, Probing Inter-modality: Visual Parsing with Self-Attention for Vision-Language Pre-training, Hongwei Xue, Yupan Huang, Bei Liu, Houwen Peng, Jianlong Fu, Houqiang Li, Jiebo Luo, Align before Fuse: Vision and Language Representation Learning with Momentum Distillation, Junnan Li, Ramprasaath R. Selvaraju, Akhilesh Deepak Gotmare, Shafiq Joty, Caiming Xiong, Steven Hoi, E2E-VLP: End-to-End Vision-Language Pre-training Enhanced by Visual Learning, Haiyang Xu, Ming Yan, Chenliang Li, Bin Bi, Songfang Huang, Wenming Xiao, Fei Huang, Seeing Out of tHe bOx: End-to-End Pre-training for Vision-Language Representation Learning, Zhicheng Huang, Zhaoyang Zeng, Yupan Huang, Bei Liu, Dongmei Fu, Jianlong Fu, A Recurrent Vision-and-Language BERT for Navigation, Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, Stephen Gould, VinVL: Revisiting Visual Representations in Vision-Language Models, Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, Jianfeng Gao, SimVLM: Simple Visual Language Model Pretraining with Weak Supervision, Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, Yuan Cao, mPLUG: Effective and Efficient Vision-Language Learning by Cross-modal Skip-connections, Chenliang Li, Haiyang Xu, Junfeng Tian, Wei Wang, Ming Yan, Bin Bi, Jiabo Ye, Hehong Chen, Guohai Xu, Zheng Cao, Ji Zhang, Songfang Huang, Fei Huang, Jingren Zhou, Contrastive Captioners are Image-Text Foundation Models, Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, Yonghui Wu, Flamingo: a Visual Language Model for Few-Shot Learning, Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, Karen Simonyan, BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation, Junnan Li, Dongxu Li, Caiming Xiong, Steven Hoi, Bridge-Tower: Building Bridges Between Encoders in Vision-Language Representation Learning, Xiao Xu, Chenfei Wu, Shachar Rosenman, Vasudev Lal, Nan Duan, VLMbench: A Compositional Benchmark for Vision-and-Language Manipulation, Kaizhi Zheng, Xiaotong Chen, Odest Chadwicke Jenkins, Xin Eric Wang, MixGen: A New Multi-Modal Data Augmentation, Xiaoshuai Hao, Yi Zhu, Srikar Appalaraju, Aston Zhang, Wanqian Zhang, Bo Li, Mu Li, Prefix Language Models are Unified Modal Learners, Shizhe Diao, Wangchunshu Zhou, Xinsong Zhang, Jiawei Wang, Language Models are General-Purpose Interface, Yaru Hao, Haoyu Song, Li Dong, Shaohan Huang, Zewen Chi, Wenhui Wang, Shuming Ma, Furu Wei, VL-BEIT: Generative Vision-Language Pretraining, Hangbo Bao, Wenhui Wang, Li Dong, Furu Wei, VLUE: A Multi-Task Benchmark for Evaluating Vision-Language Models, Wangchunshu Zhou, Yan Zeng, Shizhe Diao, Xinsong Zhang, VL-CheckList: Evaluating Pre-trained Vision-Language Models with Objects, Attributes and Relations, Tiancheng Zhao, Tianqi Zhang, Mingwei Zhu, Haozhan Shen, Kyusong Lee, Xiaopeng Lu, Jianwei Yin, Are Vision-Language Transformers Learning Multimodal Representations? In the VE task, image is the premise, and text is the hypothesis. Your search export query has expired. Natural Language for Visual Reasoning (NLVR). Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. The language of graphics: A framework for the analysis of syntax and meaning in maps, charts and diagrams. A curated list of vision-and-language pre-training (VLP). In this work, we investigate these relationships between vision-and-language tasks by developing a large-scale, multi-task training regime. 2017. Be it in semiconductors or the cloud, it is hard to visualise a linear end-to-end tech value chain, Pepperfry looks for candidates in data science roles who are well-versed in NumPy, SciPy, Pandas, Scikit-Learn, Keras, Tensorflow, and PyTorch. Abstract Continuous sign language recognition (cSLR) is a public significant task that transcribes a sign language video into an ordered gloss sequence. The paper 12-in-1: Multi-Task Vision and Language Representation Learning is available on arXiv. Much of vision-and-language research focuses on a small but diverse set of independent tasks and supporting datasets often studied in isolation; however, the visually-grounded language understanding skills required for success at these tasks overlap significantly. Guided Attention Network for Object Detection and Counting on Drones. [Multi-Task-Learning-PyTorch]: Multi-task Dense Prediction. Our work is most aligned with the image-language multi-task approaches [44,37,49,41,19,10,21,58]. University of Electronic Science&Technology of China, China, University of Electronic Science and Technology of China, China, https://dl.acm.org/doi/10.1145/3474085.3475255. It enables the exchange of information between images and text segments. Diagram understanding using integration of layout information and textual information. CoRR abs/1804.02767 (2018). However, the associations between language and vision are common across many such tasks. In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7--12, 2020. 2020. You signed in with another tab or window. [OY2bNB. CoRR abs/2103.14030 (2021). 2016. Sheng Shen, Liunian Harold Li, Hao Tan, Mohit Bansal, Anna Rohrbach, Kai-Wei Chang, Zhewei Yao, Kurt Keutzer, An Empirical Study of Training End-to-End Vision-and-Language Transformers, Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu Yuan, Nanyun Peng, Zicheng Liu, Michael Zeng, Unsupervised Vision-and-Language Pre-training via Retrieval-based Multi-Granular Alignment, Mingyang Zhou, Licheng Yu, Amanpreet Singh, Mengjiao Wang, Zhou Yu, Ning Zhang, Vision-Language Pre-Training with Triple Contrastive Learning, Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda, Liqun Chen, Belinda Zeng, Trishul Chilimbi, Junzhou Huang, Unifying Architectures, Tasks, and Modalities Through a Simple Sequence-to-Sequence Learning Framework, Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou, Hongxia Yang, VLMixer: Unpaired Vision-Language Pre-training via Cross-Modal CutMix, Teng Wang, Wenhao Jiang, Zhichao Lu, Feng Zheng, Ran Cheng, Chengguo Yin, Ping Luo, Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision, Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc V. Le, Yunhsuan Sung, Zhen Li, Tom Duerig, FILIP: Fine-grained Interactive Language-Image Pre-Training, Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, Chunjing Xu, SLIP: Self-supervision meets Language-Image Pre-training, Norman Mu, Alexander Kirillov, David Wagner, Saining Xie, Learning Transferable Visual Models From Natural Language Supervision, Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever, Data Determines Distributional Robustness in Contrastive Language Image Pre-training (CLIP), Alex Fang, Gabriel Ilharco, Mitchell Wortsman, Yuhao Wan, Vaishaal Shankar, Achal Dave, Ludwig Schmidt, Prototypical Contrastive Language Image Pretraining, Delong Chen, Zhao Wu, Fan Liu, Zaiquan Yang, Yixiang Huang, Yiping Bao, Erjin Zhou, Towards a Unified Foundation Model: Jointly Pre-Training Transformers on Unpaired Images and Text, Qing Li, Boqing Gong, Yin Cui, Dan Kondratyuk, Xianzhi Du, Ming-Hsuan Yang, Matthew Brown, UNIMO: Towards Unified-Modal Understanding and Generation via Cross-Modal Contrastive Learning, Wei Li, Can Gao, Guocheng Niu, Xinyan Xiao, Hao Liu, Jiachen Liu, Hua Wu, Haifeng Wang, One Model, Multiple Modalities: A Sparsely Activated Approach for Text, Sound, Image, Video and Code, Yong Dai, Duyu Tang, Liangxin Liu, Minghuan Tan, Cong Zhou, Jingquan Wang, Zhangyin Feng, Fan Zhang, Xueyu Hu, Shuming Shi, data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language, Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, Michael Auli, UNIFIED-IO: A UNIFIED MODEL FOR VISION, LANGUAGE, AND MULTI-MODAL TASKS, Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, Aniruddha Kembhavi, Uni-Perceiver: Pre-training Unified Architecture for Generic Perception for Zero-shot and Few-shot Tasks, Xizhou Zhu, Jinguo Zhu, Hao Li, Xiaoshi Wu, Xiaogang Wang, Hongsheng Li, Xiaohua Wang, Jifeng Dai, FLAVA: A Foundational Language And Vision Alignment Model, Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Marcus Rohrbach, Douwe Kiela. Yuri Engelhardt. 8.4 respectively. To the extent possible under law, Zhihong Chen has waived all copyright and related or neighboring rights to this work. Google Scholar Digital Library; Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. This repo started from this survey. 1994. 2. In the past few years, the emergence of pre-training models has brought uni-modal fields such as computer vision (CV) and natural language processing (NLP) to a new era. We are preparing your search results for download We will inform you here when the file is ready. 1998. On average, ne-tuning from our multi-task model for single tasks resulted in an average improvement of 2.98 points over baseline single-task trained models. To address this problem, in this paper, we propose a novel structural parsing-integrated Hierarchical Multi-Task Learning (HMTL) model for diagram question answering based on a multi-modal transformer framework. Yasuhiko Watanabe and Makoto Nagao. :-), A curated list of vision-and-language pre-training. Research Areas. Work fast with our official CLI. MMT is a two-fold task of translation and text generation, translating text from one language to another with additional information from other modalities, i.e., image. Simon Ging, Mohammadreza Zolfaghari, Hamed Pirsiavash, and Thomas Brox. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. The Visual Spatial Reasoning (VSR) corpus is a collection of caption-image pairs with true/false labels. Authors: Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, Stefan Lee Description: Much of vision-and-language research focuses on a small but divers. The paper 12-in-1: Multi-Task Vision and Language Representation Learning is available on arXiv. We invite submissions of regular and short papers. VC aims to generate semantically and syntactically appropriate text descriptions for a given visual (image or video) input. Behind the Scene: Revealing the Secrets of Pre-trained Vision-and-Language Models. Springer International Publishing, Cham, 104--120. VLR involves understanding both vision (image or video) and language domains with appropriate matching strategies. Such models are task-specific. In 2019 IEEE/CVF International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), October 27 - November 2, 2019. MM '21: Proceedings of the 29th ACM International Conference on Multimedia. Much of vision-and-language research focuses on a small but diverse set of independent tasks and supporting datasets often studied in isolation; however, the visually-grounded language understanding skills required for success at these tasks overlap significantly. Please feel free to send me pull requests or email (chihung.chan@outlook.com) to add links. Stay informed on the latest trending ML papers with code, research developments, libraries, methods, and datasets. IEEE Computer Society Press. MSA is aimed to detect sentiments in videos by leveraging multi-modal signals (e.g., vision, language, etc.). Task-Groups and Datasets We consider 12 popular vision and language datasets. M. Haurilet, A. Roitberg, and R. Stiefelhagen. Use Git or checkout with SVN using the web URL. RoBERTa: A Robustly Optimized BERT Pretraining Approach. This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository. Semantic Parsing to Probabilistic Programs for Situated Question Answering. Springer, 235--251. VideoBERT: A Joint Model for Video and Language Representation Learning. [Resisual Adapater]: Multi-domain Classification. Contrastive Representation Learning: A Framework and Review. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. (NeurIPS, 2022) [paper], Task Discovery: Finding the Tasks that Neural Networks Generalize on (NeurIPS, 2022) [paper], [Auto-] Auto-: Disentangling Dynamic Task Relationships (TMLR, 2022) [paper] [code], [Universal Representations] Universal Representations: A Unified Look at Multiple Task and Domain Learning (arXiv, 2022) [paper] [code], MTFormer: Multi-Task Learning via Transformer and Cross-Task Reasoning (ECCV, 2022) [paper], Not All Models Are Equal: Predicting Model Transferability in a Self-challenging Fisher Space (ECCV, 2022) [paper] [code], Factorizing Knowledge in Neural Networks (ECCV, 2022) [paper] [code], [InvPT] Inverted Pyramid Multi-task Transformer for Dense Scene Understanding (ECCV, 2022) [paper] [code], [MultiMAE] MultiMAE: Multi-modal Multi-task Masked Autoencoders (ECCV, 2022) [paper] [code], A Multi-objective / Multi-task Learning Framework Induced by Pareto Stationarity (ICML, 2022) [paper], Mitigating Modality Collapse in Multimodal VAEs via Impartial Optimization (ICML, 2022) [paper], Active Multi-Task Representation Learning (ICML, 2022) [paper], Generative Modeling for Multi-task Visual Learning (ICML, 2022) [paper] [code], Multi-Task Learning as a Bargaining Game (ICML, 2022) [paper] [code], Multi-Task Learning with Multi-query Transformer for Dense Prediction (arXiv, 2022) [paper], [Gato] A Generalist Agent (arXiv, 2022) [paper], [MTPSL] Learning Multiple Dense Prediction Tasks from Partially Annotated Data (CVPR, 2022) [paper] [code], [TSA] Cross-domain Few-shot Learning with Task-specific Adapters (CVPR, 2022) [paper] [code], [OMNIVORE] OMNIVORE: A Single Model for Many Visual Modalities (CVPR, 2022) [paper] [code], Task Adaptive Parameter Sharing for Multi-Task Learning (CVPR, 2022) [paper], Controllable Dynamic Multi-Task Architectures (CVPR, 2022) [paper] [code], [SHIFT] SHIFT: A Synthetic Driving Dataset for Continuous Multi-Task Domain Adaptation (CVPR, 2022) [paper] [code], DiSparse: Disentangled Sparsification for Multitask Model Compression (CVPR, 2022) [paper] [code], [MulT] MulT: An End-to-End Multitask Learning Transformer (CVPR, 2022) [paper] [code], Sound and Visual Representation Learning with Multiple Pretraining Tasks (CVPR, 2022) [paper], Medusa: Universal Feature Learning via Attentional Multitasking (CVPR Workshop, 2022) [paper], An Evolutionary Approach to Dynamic Introduction of Tasks in Large-scale Multitask Learning Systems (arXiv, 2022) [paper] [code], Combining Modular Skills in Multitask Learning (arXiv, 2022) [paper], Visual Representation Learning over Latent Domains (ICLR, 2022) [paper], ADARL: What, Where, and How to Adapt in Transfer Reinforcement Learning (ICLR, 2022) [paper] [code], Towards a Unified View of Parameter-Efficient Transfer Learning (ICLR, 2022) [paper] [code], [Rotograd] Rotograd: Dynamic Gradient Homogenization for Multi-Task Learning (ICLR, 2022) [paper] [code], Relational Multi-task Learning: Modeling Relations Between Data and Tasks (ICLR, 2022) [paper], Weighted Training for Cross-task Learning (ICLR, 2022) [paper] [code], Semi-supervised Multi-task Learning for Semantics and Depth (WACV, 2022) [paper], In Defense of the Unitary Scalarization for Deep Multi-Task Learning (arXiv, 2022) [paper], Variational Multi-Task Learning with Gumbel-Softmax Priors (NeurIPS, 2021) [paper] [code], Efficiently Identifying Task Groupings for Multi-Task Learning (NeurIPS, 2021) [paper], [CAGrad] Conflict-Averse Gradient Descent for Multi-task Learning (NeurIPS, 2021) [paper] [code], A Closer Look at Loss Weighting in Multi-Task Learning (arXiv, 2021) [paper], Exploring Relational Context for Multi-Task Dense Prediction (ICCV, 2021) [paper] [code], Multi-Task Self-Training for Learning General Representations (ICCV, 2021) [paper], Task Switching Network for Multi-task Learning (ICCV, 2021) [paper] [code], Omnidata: A Scalable Pipeline for Making Multi-Task Mid-Level Vision Datasets from 3D Scans (ICCV, 2021) [paper] [project], Robustness via Cross-Domain Ensembles (ICCV, 2021) [paper] [code], Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation (ICCV, 2021) [paper] [code], [URL] Universal Representation Learning from Multiple Domains for Few-shot Classification (ICCV, 2021) [paper] [code], [tri-M] A Multi-Mode Modulator for Multi-Domain Few-Shot Classification (ICCV, 2021) [paper] [code], MultiTask-CenterNet (MCN): Efficient and Diverse Multitask Learning using an Anchor Free Approach (ICCV Workshop, 2021) [paper], See Yourself in Others: Attending Multiple Tasks for Own Failure Detection (arXiv, 2021) [paper], A Multi-Task Cross-Task Learning Architecture for Ad-hoc Uncertainty Estimation in 3D Cardiac MRI Image Segmentation (CinC, 2021) [paper] [code], Multi-Task Reinforcement Learning with Context-based Representations (ICML, 2021) [paper], [FLUTE] Learning a Universal Template for Few-shot Dataset Generalization (ICML, 2021) [paper] [code], Towards a Unified View of Parameter-Efficient Transfer Learning (arXiv, 2021) [paper], UniT: Multimodal Multitask Learning with a Unified Transformer (arXiv, 2021) [paper], Learning to Relate Depth and Semantics for Unsupervised Domain Adaptation (CVPR, 2021) [paper] [code], CompositeTasking: Understanding Images by Spatial Composition of Tasks (CVPR, 2021) [paper] [code], Anomaly Detection in Video via Self-Supervised and Multi-Task Learning (CVPR, 2021) [paper], Taskology: Utilizing Task Relations at Scale (CVPR, 2021) [paper], Three Ways to Improve Semantic Segmentation with Self-Supervised Depth Estimation (CVPR, 2021) [paper] [code], Improving Semi-Supervised and Domain-Adaptive Semantic Segmentation with Self-Supervised Depth Estimation (arXiv, 2021) [paper] [code], Counter-Interference Adapter for Multilingual Machine Translation (Findings of EMNLP, 2021) [paper], Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data (ICLR) [paper] [code], [Gradient Vaccine] Gradient Vaccine: Investigating and Improving Multi-task Optimization in Massively Multilingual Models (ICLR, 2021) [paper], [IMTL] Towards Impartial Multi-task Learning (ICLR, 2021) [paper], Deciphering and Optimizing Multi-Task Learning: A Random Matrix Approach (ICLR, 2021) [paper], [URT] A Universal Representation Transformer Layer for Few-Shot Image Classification (ICLR, 2021) [paper] [code], Flexible Multi-task Networks by Learning Parameter Allocation (ICLR Workshop, 2021) [paper], Multi-Loss Weighting with Coefficient of Variations (WACV, 2021) [paper] [code], Multi-Task Reinforcement Learning with Soft Modularization (NeurIPS, 2020) [paper] [code], AdaShare: Learning What To Share For Efficient Deep Multi-Task Learning (NeurIPS, 2020) [paper] [code], [GradDrop] Just Pick a Sign: Optimizing Deep Multitask Models with Gradient Sign Dropout (NeurIPS, 2020) [paper] [code], [PCGrad] Gradient Surgery for Multi-Task Learning (NeurIPS, 2020) [paper] [tensorflow] [pytorch], On the Theory of Transfer Learning: The Importance of Task Diversity (NeurIPS, 2020) [paper], A Study of Residual Adapters for Multi-Domain Neural Machine Translation (WMT, 2020) [paper], Multi-Task Adversarial Attack (arXiv, 2020) [paper], Automated Search for Resource-Efficient Branched Multi-Task Networks (BMVC, 2020) [paper] [code], Branched Multi-Task Networks: Deciding What Layers To Share (BMVC, 2020) [paper], MTI-Net: Multi-Scale Task Interaction Networks for Multi-Task Learning (ECCV, 2020) [paper] [code], Reparameterizing Convolutions for Incremental Multi-Task Learning without Task Interference (ECCV, 2020) [paper] [code], Selecting Relevant Features from a Multi-domain Representation for Few-shot Classification (ECCV, 2020) [paper] [code], Multitask Learning Strengthens Adversarial Robustness (ECCV 2020) [paper] [code], Duality Diagram Similarity: a generic framework for initialization selection in task transfer learning (ECCV, 2020) [paper] [code], [KD4MTL] Knowledge Distillation for Multi-task Learning (ECCV Workshop) [paper] [code], MTL-NAS: Task-Agnostic Neural Architecture Search towards General-Purpose Multi-Task Learning (CVPR, 2020) [paper] [code], Robust Learning Through Cross-Task Consistency (CVPR, 2020) [paper] [code], 12-in-1: Multi-Task Vision and Language Representation Learning (CVPR, 2020) paper [code], A Multi-task Mean Teacher for Semi-supervised Shadow Detection (CVPR, 2020) [paper] [code], MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer (EMNLP, 2020) [paper], Masking as an Efficient Alternative to Finetuning for Pretrained Language Models (EMNLP, 2020) [paper] [code], Effcient Continuous Pareto Exploration in Multi-Task Learning (ICML, 2020) [paper] [code], Which Tasks Should Be Learned Together in Multi-task Learning?